Overview

This vignette is a WIP, and is meant to describe the architecture of a FacileDataSet in more detail. This is primarily for developers to understand how it is implemented. Casual users of FacileDataSet objects have no real need to understand this level of detail.

Hybrid Data Storage

The FacileDataSet is implemented as a well-structured directory, containing the following elements:

  1. A data.sqlite SQLite database that stores feature- and sample-level metadata.
  2. A data.h5 HDF5 file that stores a multitude of dense assay matrices that are generated from the assays performed on the samples in the FacileDataSet.
  3. A meta.yaml file tha contains information about the FacileDataSet. To better understand the structure and contents of this file, you can refer to the following:
    1. The included testdata/expected-meta.yaml file for, which is an exemplar file for the testdata/TestFacileTcgaDataSet, which consists of data extracted from two datasets (BLCA and BRCA) from the TCGA.
    2. The help file provided by the eav_metadata_create function, which describes in greater detail how we track a dataset’s sample-level covariates (aka, “pData” in the bioconductor world). In the meantime, a short description of the entries found in the meta.yaml file is provided here:
    • name: the name of the dataset (i.e. "FacileTCGADataSet")
    • organism: "Homo sapiens", "Mus musculus", etc.
    • default_assay: the name of the assay to use by default if none is specified in calls to fetch_assay_data(), [with_assay_data()], etc. (kind of like how "exprs" is the default assay used when working with a [Biobase::ExpressionSet])
    • datasets: a section tha enumerates the datasets included internally. The datasets are further enumerated.
    • sample_covariates: a section that enumerates the covariates that are tracked over the samples inside the FacileDataSet (ie. a mapping of the pData for the samples). Reference ?create_eav_metadata for more information.
  4. A custom-annotation directory, which stores custom sample_covariate (aka “pData”) information that analysts can identify and describe during the course of an analysis, or even add from external sources. Although this directory is required in the directory structure of a valid FacileDataSet, the FacileDataSet() constructor can be called with a custom anno.dir parameter so that custom annotations are stored elsewhere.

Specifying a custom anno.dir in the FacileDataSet() constructor enables you to define a directory external to the FacileDataSet that will be used to store custom annotatios. This can be convenient, for example, if you want update the FacileDataSet without blowing out user-level annotatations.

SQLite Schema

Sample- and feature-level metadata are stored in an SQLite database. To allow for the ragged nature of sample-level annotations across however-many datasets are internalized into a single FacileDataSet, these covariates are stored in an entity-attribute-value table (explained below).

We may refactor the feature-level metadata to use a similar approach, as well as the assay-level data (such as libsize, normfactors) since different assays require different types of metadata.

Entity-Attribute-Value Table

Sample covariates (aka pData) are encoded in an [entity-attribute-value (EAV) table][EAV]. Metadata about these covariates are stored in a meta.yaml file in the FacileDataSet directory which enables the FacileDataSet to cast the value stored in the EAV table to its native R type. This function generates the list-of-list structure to represent the sample_covariates section of the meta.yaml file.

For simple pData covariates, each column is treated independently from the rest. There are some types of covariates which require multiple columns for proper encoding, such as encoding of survival information, which requires a pair of values that indicate the “time to event” and the status of the event (death or censored). In these cases, the caller needs to provide an entry in the covariate_def list that describes which pData columns (varname) goes into the single facile covariate value.

Please refer to the Encoding Survival Covariates section for a more detailed description of how to define encoding survival information into the EAV table using the covariate_def parameter. Further examples of how to encode other complex atributes will be added as they are required, but you can reference the Encoding Arbitrarily Complex Covariates section for some more information.

Encoding Survival Covariates:

UPDATE: Survival covariates can now be encoded simply as a survival::Surv object and provided as a column in the pData data.frame. The following describes the original, and still supported, method.

Survival data in R is typically encoded by two vectors. One vector that indicates the “time to event” (tte), and a second to indicate whether or not the denoted tte is an “event” (1) or “censored” (0).

Normally these vectors appear as two columns in an experiment’s pData, and therefore need to be encoded into the FacileDataSet’s EAV table. To do so, the pair of vectors are turned into a signed numeric value. The absolute value of the numeric indicates the “time to event” and the sign of the value indicates its censoring status.

Let’s assume we have tte_OS and event_OS column that are used to encode a patient’s overall survival (time and censor status). To store this as an “OS” covariate in the EAV table, a covariate_def list-of-list definition that captures this encoding would look like this:

covariate_def <- list(
  OS=list(
    class="right_censored",
    arguments=c(time="tte_OS", event="event_OS"),
    label="Overall Survival",
    type="clinical",
    description="Overall survival in days"))

Note how the name of the list-entry in covariate_def defines the name of the covariate in the FacileDataSet. The class entry for the OS definition indicates the type of variable this is. The varname entry lists the columns in the pData that are combined to make this value. The names(varnames) correspond to the parameters in the [eav_encode_right_censored()] function. The analagous meta.yaml entry in the sample_covariates section for the "OS" covariate_def entry looks like so:

sample_covariates:
  OS:
    class: right_censored
    label: "Overall Survival"
    type: "clinical"
    description: "Overall survival in days"
    colnames: ["tte_OS", "event_OS"]
    argnames: ["time", "event"]

Encoding Arbitrarily Complex Covariates:

To encode a new type of complex covariate from a wide pData data.frame, we need to:

  1. Specify a new class (like "right_censored") for use within a FacileDataSet.
  2. Define an eav_encode_<class>(arg1, arg2, ...) function which takes the R data vectors (arg1, arg2) and converts them into a single value for the EAV table.
  3. Define a eav_decode_<class>(x, attrname, def, ...) function which takes the single value in the EAV table and casts it back into the R-native data vector(s).

HDF5 File Assay Data

The HDF5 file has one directory per assay. These directories have one matrix per dataset for the given assay.

For instance, the data.h5 file of a FacileDataSet that assembles rnaseq, cnv, and mirnaseq data from the [TCGA][tcga] data would look like this:

. data.h5
├── rnaseq
│   ├── ACC
│   ├── BLCA
│   ├── BRCA
│   ├── CESC
│   ├── ...
├── cnv_score
│   ├── ACC
│   ├── BLCA
│   ├── BRCA
│   ├── CESC
│   ├── ...
├── mirnaseq
│   ├── ACC
│   ├── BLCA
│   ├── BRCA
│   ├── CESC
│   ├── ...